

penn<u>State</u>

College of Agricultural Sciences

Highlights from Pennsylvania FRESHWATER SUBAQUEOUS SOILS

Patrick Drohan, Emilie Erich, Mary Kay Lupton

Acknowledgements

- Penn State, College of Ag Seed Grant
- OCNR: Chris Reese and Andy St. John
- USDA-NRCS: Ed White and Jim Doolittle
- NRCS staff in CT and RI: Debbie Surabian and Jim Turenne respectively
- URI, Mark Stolt, Mike Bradley and Maggie Payne
- Lupton and Krasinski family

PA's freshwater resources

Our objectives are to:

- Quantify and describe the genesis of subaqueous soils in an Appalachian Plateau impoundment;
- identify pedogenic dependent fate and transport relationships for Hg-T in subaerial and subaqueous soils; and
- quantify C sequestration since impoundment.

Moshannon State Forest & Lake

			Soil Subgroup
Landform	Landscape Unit	Landscape Unit Description	Classification
Main channel	Cn2	Deep water, elongate, steeply sloping units that occur in channels generally central to a bay that have been carved out by water movement (Oakley and Boothroyd, 2006).	NA
Channel bank	Ck0	Sloping region of channel abutting shoreline or other landform. Water depth 0-1 m.	Fragic Hydrowassult -Typic Hydrowassult complex
	Ck1	Sloping region of channel abutting shoreline or other landform. Water depth 1-2 m.	Fragic Hydrowassult -Typic Hydrowassult complex
Lake bottom	By1	Nearly level or slightly undulating central portion of a submerged, low-energy, depositional embayment characterized by relatively deep water (Stolt, 2005). Water depth 1-2 m.	Fragic Hydrowassult
Cove	Cv0	Small, shallow to moderately deep shletered bays of recesses (Payne, 2007). Water depth 0-1 m.	Fragic Hydrowassult -Histic Hydrowassult complex
Shoal	Sg1	Moderately shallow gently sloping ridge or bar in central bay or cove, rising above the bottom (Payne, 2007). Water depth 1-2 m.	Histic Hydrowassult

Clay and bucket auger

Histic Hydrowassult Typic Hydrowassult Fragic Hydrowassult

Vibracores

Kilometers 0.25 0.5

Bay bottom Channel bank Cove Island Main channel

Histic Hydrowassult Typic Hydrowassult Fragic Hydrowassult

1 m

Yellow pond lily

Watershield

Threeway sedge

American white water lily

Needle spikerush

Creeping or humped bladderwort

Modeled total (wet+dry) total Hg deposition in 2001.

Multiple Comparisons Chart

Multiple Comparisons Chart

C sequestration since flooding

Depth (m)

Soil carbon pools

Multiple Comparisons Chart

Pre-flood imprinting on carbon

Individual Value Plot of median SOC pool vs Soil

Interpretations

- Emergent aquatic vegetation,
- Moorings,
- Fish, bog turtle, goshawk habitat,
- Heavy metal accumulation.

In-Lake BMP's, PALMS

Practice	Objectives			
Aeration	Increase dissolved oxygen concentrations in order to improve water			
(artificial circulation and	quality for aquatic life including fish. Possibly reduce nutrient			
hypolimnetic aeration)	releases from in-lake sediments, decease phytoplankton levels and			
	improve water clarity.			
Liming	Increase pH and alkalinity. Improve water quality for aquatic life including fish.			
Alum Treatment	Improve water clarity. Physically settle out phytoplankton.			
(nutrient precipitation	Precipitation of in-lake phosphorus. Reduce nutrient releases from			
and inactivation)	lake sediments.			
Chemical Algal Control	Improve water clarity by killing or inhibiting the growth and			
BMPs	reproduction of algae.			
Macrophyte Control	Improve lake uses by reducing nuisance stands of aquatic			
BMPs	vegetation.			
Shoreline Stabilization	Reduce sediment and nutrient inputs to lakes. Improve aesthetics			
	and public safety.			
	Remove nutrient-laden sediments. Reduce internal release of			
Dredaina	nutrients from in-lake sediments. Remove aquatic macrophytes			
Dicuging	along with their seeds and roots. May improve dissolved oxygen			
	levels in the lake.			
Fishery Management	Improve overall quality of recreational fisheries.			
Nuisance Wildlife Control	Improve shoreline aesthetics. Improve water quality for contact			
	recreational activities. Remove source of nutrient loading.			
Boat Operation &	Reduce lake user conflicts. Reduce water pollution.			
Maintenance				
Aquatic Invasive Species	Reduce or eliminate exotic and invasive species that compete			
Management	against more desirable species.			

Invasive spp. control via herbicides

Adapted from PALMS, Table 1.6-3

Summary of Commonly Used Aquatic Herbicides In PA		
(Prepared by PA Fish and Boat Commission)		

Submerged Aquatic Plants					
Aquatic Herbicide	Active Ingredient	Aquatic Species Controlled	Application Rate		
Aquathol-K	Endothall	pondweed, naid,milfoil, coontail	0.6 to 1.9 gal/acre ft		
Reward or Diquat	Diquat (35.3%)	pondweed, naid,milfoil, coontail	1 to 2 gal/acre		
Weedtrine-D	Diquat (8.53%)	bladderwort, coontail, elodea, naiad, pondweed, milfoil	5-10 gal/acre		
Hydrothol 191	Endothall (53%)	naiad,elodea,coontail,pondweed,milfoil	0.7 to 3.4 gal/acre ft		
Sonar SRP	Fluridone (5%)	bladderwort,coontail, elodea, naiad, pondweed, milfoil	0.54 to 1.08 lbs/ acre		
Komeen	Copper (8%)	milfoil, elodea, pondweed, coontail (NOT an Algaecide)	1.7 to 3.3 gal/acre ft		
		Emergent and Floating Plants			
Aquatic Herbicide	Active Ingredient	Aquatic Species Controlled	Application Rate		
Rodeo	Glyphosphate (53.8%)	cattail, water lily, arrowhead, spatterdock, watershield, purple loosestrife, common reed (Phragmites)	0.75 gal/acre		
Sonar A.S.	fluridone (41.7%)	duckweed, watermeal, spatterdock, water lily also coontail, elodea, pondweed, milfoil	< 5 feet 0.16 to 1.25 qt/ acre ft > 5 feet 1.0 to 1.5 qt/ acre ft		
Aqua-Kleen Aquacide Navigate	2,4-D (20%- 27.6%)	water lily, spatterdock, watershield also milfoil, bladderwort	150 to 200 lbs/acre 100 to 150 lbs/acre		

Invasive spp. control via drawdown

Permitted activity in Pennsylvania, PAF&B

Drawdown Effect	Plant Species	Common Name	
	Cabomba caroliniana	Fanwort	
	Ceratophyllum demersum	Coontail	
Deerooco	Myriophyllum spp.	Milfoil - most species	
Decrease	Potamogeton robbinsii	Robbin's pondweed	
	Nuphar spp.	Yellow waterlily - most species	
	Utricularia spp.	Bladderwort	
	Chara spp.	Muskgrass - most species	
No change	Elodea Canadensis	Elodea	
or variable	Typha latifolia	Broad-leaf Cattail	
	Valisneria americana	Tapegrass	
Incrosco	Potamogeton spp.	Pondweed - most species	
IIICI ease	Najas flexilis	Bushy pondweed	
		PALMS. NYSDEC 1990	

Invasive spp. control via harvesting

ROOTED EMERGED Species include: •Bullrushes/cattails •Reeds •Sawgrass •Sedges

www.weedharvesters.com

ROOTED SUBMERED Species include: •Milfoil •Elodea •Hydrilla •Pondweeds

•Eelgrass

Current work

Expansion of lake sampling (state agencies)
Quantifying pedogenesis in created wetlands
PA Sea Grant collaboration

http://www.youtube.com/watch?v=pQ8nyZW9TSk

Questions?