

Shellfish and Aquaculture

Dale Leavitt Associate Professor - Marine Biology

Today:

- Shellfish biology / Shellfish aquaculture
- Shellfish ecological services
- Shellfish & Subaqueous soils

A typical bivalve's life cycle

Overall culture schematic

The steps in culturing shellfish

D

Broodstock Conditioning

Broodstock Conditioning

The steps in culturing shellfish

D

Spawning

The steps in culturing shellfish

D

Veliger

The steps in culturing shellfish

D

Metamorphosis

RWU Hatchery – Setting downweller

RWU Hatchery – Remote set on cultch

Setting Cues – Habitat related

Oysters

- Prefer a hard substrate with CaCO₃ (other oysters or shell)
- Eggshell or bird grit (for single oysters)
- Calcium carbonate cement slurry (Chinese hats)

Bay Scallop

- Like to settle on eelgrass blades
- Netron and/or spat bags or old monofilament

Quahogs, steamer clams, and razor clams

- Like to settle on cobble/sand (We think!)
- Nitex mesh screens

Mussels

- Somewhat indiscriminate with their setting
- Fine thread or pieces of rope

The steps in culturing shellfish

Post-set growth

GROWTH RESULTS IN A FLOATING UP-WELLER SYSTEM

Shellfish Nursery Systems

Upwellers

The steps in culturing shellfish

D

Hypothetical quahog growth curve

Shellfish Growout – Potential Sites

Hypothetical quahog growth curve

Roger Williams University

The fruits of your labor to market

Ecological Services

- There are many convincing reasons to consider managing for a strong shellfish population
- Shellfish as "Ecological Engineers"
 - Improving water clarity through daily filtering large volumes of water with a minimum particle retention size of 2-3 microns

Ecological Services

- There are many convincing reasons to consider managing for a strong shellfish population
- Shellfish as "Ecological Engineers"
 - Improving water clarity through daily filtering large volumes of water with a minimum particle retention size of 2-3 microns
 - Removing nitrogen and other nutrients from coastal waters through the consumption of phytoplankton and suspended particulates and either assimilating them into bivalve tissue or transitioning them onto the sediment surface
 - Increasing the rate of nitrogen removal from the coastal ecosystem through promoting anaerobic denitrification in sediment below the oyster bed

Ecological services

D

Ecological Services

 There are many convincing reasons to consider managing for a strong shellfish population

Shellfish as "Ecological Engineers"

- Improving water clarity through daily filtering large volumes of water with a minimum particle retention size of 2-3 microns
- Removing nitrogen and other nutrients from coastal waters through the consumption of phytoplankton and suspended particulates and either assimilating them into bivalve tissue or transitioning them onto the sediment surface
- Increasing the rate of nitrogen removal from the coastal ecosystem through promoting anaerobic denitrification in sediment below the oyster bed
- Increasing the three-dimensional complexity of the bottom of our coastal ponds/bays thereby providing increased habitat value for other important marine organisms

Why are oysters important to the bays?

- Habitat complexity
 - Hard substrate
 - Bottom roughness

Habitat

Shellfish as an economic benefit

The role of sediment in shellfish production

- A volume of scientific literature available that relates shellfish production to subaqueous soil characteristics, including
 - Larval recruitment substrate selection
 - Post-metamorphic shellfish distribution
 - Shellfish growth and survival
- Two local examples of the interrelationship between shellfish production and sediment characteristics
 - Soft shell clam distribution
 - Oyster growth and survival

Soft shell clam (Mya arenaria)

- An infaunal bivalve that is cc to our local coastal embayments
 - Noted for its ability to exist deeply buried in the sediment

- ls an important commercial speci regionally
- It is becoming an important commercially cultured species
 - Partially dependent on wild collecti of seed

Soft shell clam distribution

Long noted that in areas with soft shell clam seed – anything that disturbed water flow resulted in enhanced clam recruitment

Clam tents (intercepting sediment transport)

The connection between shellfish & substrate

Alex Salisbury (URI Master's student of Mark Stolt)

Measured shellfish growth in various soil types across two coastal ponds in RI

Total Oyster Production Over 2 Growing Seasons: Ninigret and Quonochontaug Ponds

Total live oysters (#) and total biovolume (L) between oyster gear at study sites and subaqueous landscapes. (WFS – washover fan slope; WF – washover fan flat; MC – mainland cove; MB – mainland beach; LB – lagoon bottom)

The connection between shellfish & substrate

Alex Salisbury (URI Master's student of Mark Stolt)

- Oyster growth rates increased with increases in sand content of the surface horizon of the soil,
 - while soils having increases in silt-clay contents, showed a relative reduction in growth, as well as decreases in biovolume, and increased mortality.

Relationship of sand content to oyster growth

Figure 2.9. Regression analysis of soil particle size (Sand = <0.05 mm) predicting oyster growth on subaqueous landscape units (See Table 2.10). Note the positive slope of the regression.

The connection between shellfish & substrate

Alex Salisbury (URI Master's student of Mark Stolt)

- Oyster growth rates increased with increases in sand content of the surface horizon of the soil,
 - while soils having increases in silt-clay contents, showed a relative reduction in growth, as well as decreases in biovolume, and increased mortality.
- Higher growth rates and decreased mortalities were observed on higher energy soil-landscape units than the fine textured Lagoon Bottom and Cove.

 Much more work needed to differentiate actual direct soil effects from indirect indicator effects

For example: is soil type an indirect indicator of current energy and thus food flux to the growing bivalve or does it have a direct impact on growth physiology?

In Conclusion: Shellfish aquaculture and soil characteristics

- Specific shellfish species have distinct likes and dislikes in terms of soil characteristics
 - Can impact their distribution and production performance
- Much more work is necessary to tease out the roles that various soil factors may play in shellfish production
 - e.g. the role of *in situ* pore water acidity on recruited spat survival
- Shellfish farmers can be very ingenious in adapting their species selection and culture technology to the prevailing soil characteristics at a specific site
 - Often don't have the luxury of optimizing their site selection based on soil characteristics

