Subaqueous Soils in a Rhode Island Estuary: Case Study

> Mark H. Stolt Michael P. Bradley

Our Contributions

Shallow-Subtidal Wetlands
Evaluating Methods to Map the Submerged Topography
Subaqueous Soil Survey in Southern New England
Subaqueous Soil-Eelgrass Relationships

Spatial Context of Shallow-Subtidal Habitats

tides, while the irregularly flooded zone is flooded less often. (Source: Tiner 1987)

Hydric Soils + Hydrophytic Vegetation + Wetland Hydrology = Wetland

Functions and Values of Shallow-Subtidal Habitats

Particularly when vegetated by seagrasses, the functions and values of these areas include as habitat for finfish and shellfish, shoreline stabilization, water quality enhancement, and they have high productivity rates.

Shallow-Subtidal Wetlands

They have all the necessary components to be identified as a coastal wetland type.

-hydric soils

-hydrophytic vegetation

-wetland hydrology

These wetland types need a new Cowardin subsystem to facilitate the recognition of these wetland types

Ninigret Pond

Atrest

Block Island Sound

Study Area

Evaluating Methods to Map the Submerged Topography

Evaluate and compare existing data (NOAA and ACOE) to data we collected using surveying

The Aquatic Cart

Landscape Units

- Bc Barrier Cove
- Bbe Barrier-Submerged Glacial Beach
- Ftd Flood-Tidal Delta
- FtdS Flood-Tidal Delta Slope
- LB Lagoon Bottom
- Mc Mainland Cove
- Msc Mainland-Shallow Cove
- Mbe Mainland-Submerged Erosional Beach
- Mch Mid-lagoon Channel
- SI Saltmarsh Island
- Sh Shoal
- Bb Storm-Surge Platform
- BbS Storm-Surge Platform Slope

	Boulder	S
		nnlos
S	Soil-Landsca	pe Units
	Bc	Barrier Cove
	GBb(C)	Glacial Barrier Submerged Beach
	Ftd	Flood-Tidal Delta
	FtdS(A)	Flood-Tidal Delta Slope
	I	Intertidal Sand Flat
	LB	Lagoon Bottom
	Mc	Mainland Cove
	GMs(B)	Mainland Submerged Beach (Sand Phase)
	GMb(C)	Mainland Submerged Erosional Beach
	Gch(D)	Mid-lagoon Channel
	LBs	Shallow Lagoon Bottom
	Bb	Back-Barrier
	BbS(A)	Back-barrier Slope
	Gi(B)	Glacial Fluvial Outcrop Island
	Gfb	Glacial Fluvial Bar

Base Map: MIT Orthophotography March 21, 2001 Coarse-Ioamy, Typic Fluvaquent A1 0-13 cm sil

A2 13-26 cm vfsl

C 26-44 cm s

2Ab 44-62 cm vfsl

2C 62-69 cm sl 3Ab 69-86 cm fsl

3C1 86-93 cm ls 3C2 93-100 cm ls 4Ab 100-108 sl

Coarse-silty over sandy skeletal, Typic Hydraquent A1 0-13 cm sil AC 13-26 cm fsl C1 26-39 cm sil C2 39-50 cm sil C3 50-60 cm sl 50% shells

2C4 60-88 cm vgrcos, 50% gravel.

Subaqueous Soil Classifications

Subgroup Classifications

Typic Hydraquents

Typic Fluvaquents

Typic Sulfaquents

Typic Psammaquents

Typic Endoaquents

Thapto-Histic Hydraquents

Subaqueous Soil-Landscape Units and Eelgrass Relationships

Mike Bradley with an eelgrass plant

Boulder Vibra-C Soil Sar il-Landsca	s ores nples pe Units
sc	Barrier Cove
Bb(C)	Glacial Barrier Submerged Beach
ťd	Flood-Tidal Delta
tdS(A)	Flood-Tidal Delta Slope
	Intertidal Sand Flat
В	Lagoon Bottom
1c	Mainland Cove
GMs(B)	Mainland Submerged Beach (Sand Phase)
GMb(C)	Mainland Submerged Erosional Beach
Sch(D)	Mid-lagoon Channel
Bs	Shallow Lagoon Bottom
Bb	Back-Barrier
BbS(A)	Back-barrier Slope
Gi(B)	Glacial Fluvial Outcrop Island
fb	Glacial Fluvial Bar

Eelgrass distribution in the study area

Eelgrass cover related to depth

Eelgrass and water depth relationships

Subaqueous Soil Map Unit	Average Eelgrass Cover	USDA Soil Texture Classification
Barrier Cove (Bc)	$\frac{6}{100 \pm 0}$ (N) 100 ± 0 (2)	very fine sandy loam
Shallow Lagoon Bottom (LBs)	89 <u>+</u> 3.81 (3)	silt loam
Flood-tidal Delta Slope (FtdS A)	82 <u>+</u> 14 (4)	silt loam
Lagoon Bottom (LB)	66 <u>+</u> 37.9 (15)	silt loam
Barrier Submerged Glacial Beach (GBb C)	13 <u>+</u> 21.3 (7)	fine sand
Glacial Fluvial Outcrop Island (Gi B)	8 <u>+</u> 14.4 (5)	gravelly coarse sand
Mainland Submerged Beach (Sand Phase) (GMs B)	5 <u>+</u> 10 (4)	very fine sand
Glacial Fluvial Point Bar (Gfb)	5 <u>+</u> 10 (4)	loamy sand
Flood-tidal Delta Flat (Ftd)	0 (2)	very fine sand
Back-barrier Flat (Bb)	0 (4)	sand
Mainland Submerged Erosional Beach (GMb C)	0 (9)	coarse sand
Back-barrier Slope (BbS A)	0 (2)	coarse sand
Mainland Cove (Mc)	0 (1)	silt loam
Mid-lagoon Channel (Gch D)	0 (2)	gravelly coarse sand

carbonate, and CRS = chromium reducible sulfides).

	High Eelgrass	Low Eelgrass	No Eelgrass	ANOVA
	Cover	Cover	(mean <u>+</u> sd)	P-value
	(mean <u>+</u> sd)**	(mean <u>+</u> sd)	N = 9	
	N = 4	$\mathbf{N} = 4$		
Eelgrass	84.0 ± 14.4^{a}	11.8 ± 6.0^{b}	0 ± 0^{c}	< 0.001*
Cover				
AVS (ug/g)	99.0 ± 5.3^{a}	7.25 ± 2.1^{b}	19.9 ± 2.5^{b}	0.001*
Salinity (ppt)	39.8 ± 4.6^{a}	$25.5 \pm 5.54^{\rm b}$	27.4 ± 5.9^{b}	0.004*
Silt %	46.9 ± 17.7^{a}	7.2 ± 2.3^{b}	12.3 ± 17.7^{b}	0.004*
Sand %	38.4 ± 18.6^{a}	90.6 ± 3.6^{b}	82.0 ± 25.0^{b}	0.005*
Clay %	14.6 ± 5.9^{a}	2.2 ± 1.8^{b}	5.7 ± 7.2^{ab}	0.031*
Total Nitrogen %	0.24 ± 0.1^{a}	0.03 ± 0.03^{b}	0.1 ± 0.1^{ab}	0.038*
pH	7.54 ± 7.17^{a}	7.95 ± 0.34^{ab}	7.95 ± 0.26^{b}	0.045*
Organic Carbon %	2.8 <u>+</u> 1.2	0.6 ± 0.2	1.5 ± 2.1	0.218
Rock Fragments %	0	14.5 <u>+</u> 16.2	8.0 <u>+</u> 13.6	0.302
CaCO ₃ %	1.1 ± 0.3	0.5 ± 0.3	0.9 ± 1.0	0.558
Shell Fragments %	0	4.9 <u>+</u> 7.6	5.8 <u>+</u> 12.2	0.621
Total Sulfur (ug/g)	560.1 <u>+</u> 770	254.0 <u>+</u> 46.4	421.8 <u>+</u> 722.6	0.804
CRS (ug/g)	461.5 <u>+</u> 816.7	247.3 <u>+</u> 46.0	402.2 ± 698.8	0.888

Sequential linear regression model

Model	R	R-	Adjusted R-	Std. Error
		square	square	of the
				estimate
AVS	.790	.624	.599	22.8858
AVS, TN	.793	.629	.576	23.5216
AVS, TN, OC	.922	.851	.816	15.4947

y Eelgra	ass transects
Vibra	-Cores Eelgrass
🔅 Soil S	Samples
Soil-Landsca	ape Units
Bc	Barrier Cove
GBb(C)	Barrier Submerged Glacial Beach
Ftd	Flood-Tidal Delta
FtdS(A)	Flood-Tidal Delta Slope
1	Intertidal Sand Flat
LB	Lagoon Bottom
Mc	Mainland Cove
GMs(B)	Mainland Submerged Beach (Sand Phase)
GMb(C)	Mainland Submerged Erosional Beach
Gch(D)	Mid-lagoon Channel
LBs	Shallow Lagoon Bottom
Bb	Back-Barrier
BbS(A)	Back-barrier Slope
Gi(B)	Submerged Glacial Fluvial Outcrop Island
Gfb	Submerged Glacial Fluvial Point Bar

Base Map: MIT Orthophotography March 21, 2001