Soil Survey Investigations of Freshwater Subaqueous Soils

Jonathan M. Bakken M.S. Candidate University of Rhode Island Department of Natural Resources Science July 16, 2012

Outline

Introduction to subaqueous soils

Chapter 1 - Characterization and mapping of freshwater subaqueous soil resources

Chapter 2 - Freshwater subaqueous soils: accumulation of metals (arsenic and lead) and the determination of sedimentation rates

Chapter 3 – Freshwater subaqueous soils and carbon accounting

Chapter 4 – Aquatic invasive plants, total extractable phosphorus, and freshwater subaqueous soil relationships

Subaqueous Soil

► Investigated as soil for the past 10-15 years

➢ Occur in water that is generally <2.5 m deep</p>

Support submerged aquatic vegetation

Undergoes pedogenesis (soil forming processes)

► Incorporated in Soil Taxonomy (2010)

Little work has been completed in freshwater systems

Subaqueous Soil Investigations

Texas

New Hampshire

Massachusetts

Pennsylvania Rhode Island

New York

Maryland

Connecticut

Florida

Previous Subaqueous Soil Mapping in Rhode Island

- ≻ NRCS, Mapcoast, URI
- Coastal ponds and embayments
- Bathymetry data were used to create landform base maps
- Delineation of landscape units
- Vibracoring and field descriptions

Mapping and interpretations (i.e. shellfish management, dredged materials, eelgrass restoration, and carbon accounting)

Study Sites

<u>3 natural ponds:</u>

Worden Pond Watchaug Pond Tucker Pond

<u>3 created ponds:</u>

Belleville Pond Bowdish Reservoir Smith & Sayles Reservoir

Summary Table of Study Sites

Name	Bowdish Reservoir	Smith and Sayles Reservoir	Belleville Pond	Tucker Pond	Worden Pond	Watchaug Pond
Area (ha)	103	75	48	39	444	231
Watershed Size (mi ²)	1478	640	1366	317	317	317
Maximum Depth (m)	3.0	3.4	2.7	9.8	2.1	13.1
Average Depth (m)	1.8	1.5	1.5	3.4	1.2	2.4
Year Impounded	1850	1865	1800	N/A	N/A	N/A

Summary Table of Study Sites

Name	Bowdish Reservoir	Smith and Sayles Reservoir	Belleville Pond	Tucker Pond	Worden Pond	Watchaug Pond
Area (ha)	103	75	48	39	444	231
Watershed Size (mi ²)	1478	640	1366	317	317	317
Maximum Depth (m)	3.0	3.4	2.7	9.8	2.1	13.1
Average Depth (m)	1.8	1.5	1.5	3.4	1.2	2.4
Year Impounded	1850	1865	1800	N/A	N/A	N/A

Summary Table of Study Sites

Name	Bowdish Reservoir	Smith and Sayles Reservoir	Belleville Pond	Tucker Pond	Worden Pond	Watchaug Pond
Area (ha)	103	75	48	39	444	231
Watershed Size (mi ²)	1478	640	1366	317	317	317
Maximum Depth (m)	3.0	3.4	2.7	9.8	2.1	13.1
Average Depth (m)	1.8	1.5	1.5	3.4	1.2	2.4
Year Impounded	1850	1865	1800	N/A	N/A	N/A

Chapter 1 – Characterization and mapping of freshwater subaqueous soil resources

Objectives:

 Evaluate the effectiveness of bathymetric maps and ground-penetrating radar (GPR) for establishing soillandscape relationships in freshwater subaqueous soils

 Characterize, classify, and map freshwater subaqueous soil resources

1) Fathometer - bathymetry

2) Ground-penetrating radar (GPR)

3) Development of landscape units

4) Soil sampling

5) Soil descriptions

 6) Numerous lab methods: bulk density, rubbed fiber content, Na-pyrophosphate color, 5:1 soil conductivity, 1:1 water and 1:2 CaCl₂ pH, loss-on-ignition (LOI) SOM, CHN analyzer

7) Creation of soil map units (classified at the series level)

8) National Soil Survey Database

Results – Bathymetry and landscape delineations

Percent cover of landscape units by water body:

	Bowdish Reservoir	Smith and Sayles Reservoir	Belleville Pond	Tucker Pond	Worden Pond	Watchaug Pond
Cove	4	14	24	6	6	13
Shoal	7	2	3	na	4	5
Lakebed	79	63	58	43	64	64
Shoreline	10	22	16	29	26	7
Deepwater	na	na	na	23	na	10

Note: na indicates that these landscape units were not present in this water body

Ground-penetrating radar (GPR)

• Ground penetrating radar utilizes radio frequency waves to detect subsurface features

• Waves reflect when they encounter a change in the electrical properties of sediment

• The unit can be pulled across the ice (a flat surface) or behind a boat

Results – GPR

₽

Characterization and Classification – Organic and mineral soil profile descriptions

<u>Wassists (9023):</u>

Oal--0 to 50 centimeters; muck

Oa2--50 to 72 centimeters; muck

Oa3--72 to 86 centimeters; muck

Oe1--86 to 114 centimeters; mucky peat

Oe2--114 to 144 centimeters; woody mucky peat

Wassents (9028):

A1--0 to 11 centimeters; loamy sand A2--11 to 23 centimeters; mucky sandy loam CA--23 to 41 centimeters; sand Cg1--41 to 87 centimeters; sand Cg2--87 to 132 centimeters; fine sand Cg3--132 to 200 centimeters; fine sand Cg4--200 to 257 centimeters; loamy fine sand

Summary of Family Classifications

Family Classification	Number of Pedons
Loamy, dysic, mesic (Terric) Sapric Frasiwassists***	7
Sandy, dysic, mesic (Terric) Sapric Frasiwassists***	2
Sandy, Mixed, mesic Histic Humaquept	2
Sandy, mixed, mesic, Typic Humaquepts	6
Sandy over Loamy, mixed, mesic Typic Humaquepts	1
Coarse-loamy, mesic Typic Humaquepts	1
Coarse-loamy over sandy-skeletal, mesic Typic Humaquepts	2
Coarse-loamy, Mixed, mesic Typic Frasiwassents	14
Coarse-loamy, Mixed, mesic Fluventic Frasiwassent	4
Dysic, mesic, Sapric Frasiwassists	25
Mixed, mesic Psammentic Frasiwassents	9
Siliceous, mesic Psammentic Frasiwassents	3
Coarse-loamy, Mixed, mesic Thapto-histic Frasiwassents	2
Sandy, Mixed, mesic, Fluvaquentic Humaquept	2
Coarse-loamy, Mixed, mesic Fluvaquentic Humaquept	1
	81

*Any additional pedons were classified to the subgroup level **All mineralogy classes (i.e. mixed or siliceous) were assumed ***The Terric designation is currently being proposed as an addition to *Soil Taxonomy*

(Psammentic

Frasiwassent)

Shannock (Typic Humaquept)

Tuckertown muck (Sapric Frasiwassist)

Web Soil Survey

Distribution of soil series by waterbody (ha)

	Bowdish Reservoir	Smith and Sayles Reservoir	Belleville Pond	Worden Pond	Watchaug Pond	Tucker Pond
Shannock	na	na	5	142	89	1
Tuckertown	70	na	12	na	37	26
Wickford	na	35	29	11	15	2
Aquapaug	11	6	1	251	33	na
Burlingame	22	34	na	39	56	10
Total (ha)	103	75	48	444	231	39

Note: na indicates that these soil series were not present in this water body.

Characterization and Classification – Soil map units

Soil classifications to the subgroup level with acreages:

Subgroup Classification	Soil Series Name	Acreage of Classifications (ha) (and number of Map Unit Symbols)*	Percent Coverage Within Combined Sample Areas
Sapric Frasiwassist	Tuckertown muck	146 (6)	16%
Terric Frasiwassist	Wickford muck	92 (7)	10%
Typic Humaquept	Shannock fine sandy loam	238 (5)	25%
Psammentic Frasiwassent	Aquapaug loamy sand	303 (8)	32%
Aeric Frasiwassent	Burlingame sandy loam	161 (16)	17%

Ē

Soil Genesis (reasons for these soils)

The history and background of each individual water body is important

Flooded wetland systems (i.e. Belleville Pond)

Formation of ice-block lakes (natural ponds)

Histic epipedons in the created water bodies (true subaqueous Inceptisols?)

Presence of umbric epipedons

Histosols and Inceptisols were commonly found (differs from estuarine systems)

Key Results and Conclusions

• Bathymetry, GPR, ground-truthing, sample collection, and soil characterization were used to map freshwater subaqueous soils

• Bathymetric data were used to identify five landscape units (fewer than coastal systems) which included Lakebed, Shoals, Shoreline, Coves, and Deepwater.

• GPR technology (which can't be used in estuarine systems) was invaluable allowing for quick and accurate analysis of water depth, substrate type, and substrate thickness.

• The most commonly found soil was the Psammentic Frasiwassents (32% of the total area mapped).

• Five new soil series were developed for the soils that commonly occur on these subaqueous landscapes.

Chapter 2 – Freshwater subaqueous soils: accumulation of metals (arsenic and lead) and the determination of sedimentation rates

Objectives:

 Better understand As and Pb accumulation and distribution in the freshwater systems

Use As and Pb as stratigraphic markers to estimate the sedimentation rates of lakes over the last ~100 years

Materials and Methods

• Samples were collected from select vibracores (from the surface to 25 cm every 2.5 cm, and between 25 and 75 cm every 5 cm)

• Total concentrations (ug g⁻¹) determined for both As and Pb

• Enrichment factors: EF = (X/Y)sample / (X/Y)background

• NOAA guideline comparisons (ERL and ERM limits)

NITON XL3t XRF analyzer

• Sedimentation rates (cm yr⁻¹)

Concentrations

▶ Upper 20-30 cm

 \succ Limits of Detection (LOD) for the XRF analyzer (zeros)

 \triangleright Possible sources of As and Pb include mining, manufacturing, fossil fuel combustion, and other uses in agriculture and forestry

Parts per million (ppm) Arsenic Lead

Tucker Pond- 9045

Depth (cm)

Enrichment factors

Water-Body	Pedon	Soil Series	**As Enrichment Factor Range	**Pb Enrichment Factor Range
Belleville Pond	9018	Wickford	5.0 - 13.4	1.1 - 7.5
Belleville Pond	9021	Wickford	4.3 - 14.1	1.1 - 6.5
Belleville Pond	9022	Tuckertown	9.2 - 152.9	1.1 - 138.8
Smith and Sayles	7003	Wickford	4.4	1.2 - 5.2
Smith and Sayles	7005	Wickford	5.4 - 10.1	1.0 - 5.7
Smith and Sayles	7007	Burlingame	N/A	1.1 - 5.1
Tucker Pond	9041	Burlingame	3.0 - 7.8	1.1 - 5.1
Tucker Pond	9044	Tuckertown	4.2 - 8.3	1.3 - 5.3
Tucker Pond	9045	Tuckertown	2.7 - 7.0	1.0 - 4.2
Watchaug Pond	9026	Shannock	25.4	1.2 - 8.4
Watchaug Pond	9029	Burlingame	2.47	1.4 - 6.7
Watchaug Pond	9032	Burlingame	N/A	1.6 - 13.4
Worden Pond	9003	Shannock	2.5 - 5.2	1.0 - 4.1
Worden Pond	9013	Shannock	5.6 - 9.2	1.1 - 4.1
Worden Pond	9014	Shannock	6.8 - 7.8	1.2 - 5.2

As and Pb relationships

NOAA biological effects limits

Water- Body	*ID	Soil Series	# of Pb Values > Background Levels (and below ERL)**	# of As Values > Background Levels (and below ERL)**	# of Pb Values between ERL and ERM Limits***	# of As Values between ERL and ERM Limits***	# of Pb Values > ERM Limits ****	# of As Values > ERM Limits ****	Range in Pb Concentration (ppm)	Range in As Concentration (ppm)
Belleville	9018	Wickford	3	2	2	4	0	0	<lod -="" 129<="" td=""><td><lod -="" 29<="" td=""></lod></td></lod>	<lod -="" 29<="" td=""></lod>
Belleville	9021	Wickford	15	1	3	11	0	0	11 - 130	<lod -="" 28<="" td=""></lod>
Belleville	9022	Tuckertown	5	0	4	3	6	5	8 - 2991	<lod -="" 403<="" td=""></lod>
S&S	7003	Wickford	13	1	7	0	0	0	11 - 66	<lod -="" 6<="" td=""></lod>
S&S	7005	Wickford	10	1	3	3	0	0	8 - 119	<lod -="" 18<="" td=""></lod>
S&S	7007	Burlingame	9	0	4	0	0	0	10 - 69	<lod< td=""></lod<>
Tucker	9041	Burlingame	13	0	3	3	0	0	10 - 97	<lod -="" 18<="" td=""></lod>
Tucker	9044	Tuckertown	3	0	2	4	0	0	<lod -="" 136<="" td=""><td><lod -="" 26<="" td=""></lod></td></lod>	<lod -="" 26<="" td=""></lod>
Tucker	9045	Tuckertown	9	0	8	7	0	0	8 - 153	<lod -="" 34<="" td=""></lod>
Watchaug	9026	Shannock	2	1	0	0	0	0	<lod -="" 16<="" td=""><td><lod -="" 6<="" td=""></lod></td></lod>	<lod -="" 6<="" td=""></lod>
Watchaug	9029	Burlingame	4	1	0	0	0	0	8 - 19	<lod -="" 7<="" td=""></lod>
Watchaug	9032	Burlingame	11	0	0	0	0	0	7 - 22	<lod< td=""></lod<>
Worden	9003	Shannock	18	1	0	4	0	0	9 - 30	<lod -="" 16<="" td=""></lod>
Worden	9013	Shannock	3	2	0	6	0	0	<lod -="" 19<="" td=""><td><lod -="" 51<="" td=""></lod></td></lod>	<lod -="" 51<="" td=""></lod>
Worden	9014	Shannock	3	0	0	3	0	0	<lod -="" 20<="" td=""><td><lod -="" 15<="" td=""></lod></td></lod>	<lod -="" 15<="" td=""></lod>

*All pedons were collected in Rhode Island in 2011 (i.e. 2011RI00). 21 samples were collected for each pedon sampled. **RIDEM soil background levels = 1.7 ug/g for As; 13.9 ug/g for Pb

***NOAA Effects Range Low (ERL) guideline thresholds for biological effects = 8 for As; 47 for Pb

****NOAA Effects Range Median (ERM) guideline thresholds for biological effects = 70 for As; 218 for Pb

₽

Results – NOAA biological effects limits

		# o	f Pb	# of As	# of Pb	# of As	# of Ph	# of As			
Water- Body	*ID	<u>(n = 315)</u>				As		Pb		Pb tion	Range in As Concentration (ppm)
Belleville	9018	Soil Backg	round	l Level		1.7 ug g	-1	13.9 ug	g^{-1}	129	<lod -="" 29<="" th=""></lod>
Belleville	9021		agible	offooto?		9 ug g ⁻	1	47.000	~ ⁻¹	0	<lod -="" 28<="" th=""></lod>
Belleville	9022	NOAA po	SSIDI	effects		o ug g	•	47 ug	g	1	<lod -="" 403<="" td=""></lod>
S&S S&S	7003	NOAA "m	obab	le effects"		70 iig g ⁻	-1	218 ug	σ^{-1}))	<lod -="" 6<br=""><lod -="" 18<="" th=""></lod></lod>
S&S	7007	<u> P-</u>	0.04.01			10 48 8		210 48	8)	<lod< th=""></lod<>
Tucker	9041									7	<lod -="" 18<="" th=""></lod>
Tucker	9044									136	<lod -="" 26<="" th=""></lod>
Tucker	9045	# that have		:bla offoot	~	10		26		3	<lod -="" 34<="" th=""></lod>
Watchaug	9026	# that have	poss	ible effect	S	48		30		16	<lod -="" 6<="" th=""></lod>
Watchaug	9029		_								<lod -="" 7<="" th=""></lod>
Watchaug	9032	# that have	e prob	able effec	ets	5		6			<lod< th=""></lod<>
Worden	9003		-								< <u>LOD - 1</u> 6
Worden	9013	Shannook	5	2	U	0	U	0		19	<lod -="" 51<="" th=""></lod>
Worden	9014	Shannock	3	0	0	3	0	0	<lod -<="" td=""><td>20</td><td><lod -="" 15<="" td=""></lod></td></lod>	20	<lod -="" 15<="" td=""></lod>

*All pedons were collected in Rhode Island in 2011 (i.e. 2011RI00). 21 samples were collected for each pedon sampled. **RIDEM soil background levels = 1.7 ug/g for As; 13.9 ug/g for Pb

***NOAA Effects Range Low (ERL) guideline thresholds for biological effects = 8 for As; 47 for Pb

****NOAA Effects Range Median (ERM) guideline thresholds for biological effects = 70 for As; 218 for Pb

Results - Sedimentation rates

	Water-body	Sampling ID	Year Impounded	Depth to background levels of Pb and As	Se Ra bas	dimentat ite (cm y sed on 19	tion r ⁻¹) 20*	
	Belleville Pond	9018	1800	15		0.16		
	Belleville Pond	9021	1800	25		0.27		
	Belleville Pond	9022	1800	20		0.22		
	S&S Reservoir	7003	1865	30		0.33		
	S&S Reservoir	7005	1865	20		0.22		
	S&S Reservoir	7007	1865	25		0.27		
Γ	Tucker Pond	9041	Natural Pond	17		0.19		
Γ	Tucker Pond	9044	Natural Pond	12		0.13		
	Tucker Pond	9045	Natural Pond	22.5		0.25		
	Watchaug Pond	9026	Natural Pond	2.5		0.03		
	Watchaug Pond	9029	Natural Pond	2.5		0.03		
	Watchaug Pond	9032	Natural Pond	5		0.05		
	Worden Pond	9003	Natural Pond	7.5		0.08		
	Worden Pond	9013	Natural Pond	20		0.22		
	Worden Pond	9014	Natural Pond	2.5		0.03		
		Source of <u>Var</u>	iation <u>DF</u>	SS	MS	F	P	
Na	atural vs. Created	Between Gro	oups 1	0.0661	0.0661	11.011	0.00	6
20	omparison:	Residual	13	0.0781	0.00601			
		Total	14	0.144				

Sedimentation rates

_

Key Results and Conclusions

• Elevated concentrations of As and Pb were generally found in the upper 20-30 cm of each pedon.

• The source of these metals was likely lead-arsenate pesticide and leaded gasoline that began to show up in the environment around 1920.

• Proximity to contaminant sources, as well as dam location in the reservoirs, were both found to be important determinants in regards to the spatial distribution of As and Pb concentrations.

• Reservoirs had significantly higher sedimentation rates.

Chapter 3 – Freshwater subaqueous soils and carbon accounting

Objectives:

 Elucidate the magnitude and distribution of SOC in three natural and three created freshwater lakes in Rhode Island

 Estimate SOC pools, providing a useful interpretation to aid in the accounting of subaqueous SOC pools

Materials and Methods

- Forty-six pedons (Macaulay peat sampler or a vibracorer)
- Loss-on-ignition and CHN analyzer (Costech ECS 4010) results
- Soil organic carbon pools were calculated for each horizon using the equation:
 SOC = Cs*L*Db
 Where Cs = soil organic carbon content (kg C kg⁻¹ soil)
 L = soil horizon thickness (m)
 Db = bulk density of soil (g cm⁻³)

Sapric Frasiwassist

SOC contents

Freshwater subaqueous SOC pool comparisons

Weighted average SOC pool comparisons

	Pond	Soil Series	Area (ha)	% of pond area	Weighted Cpool Average (Mg C ha ⁻¹)
	Watchaug	Shannock	89	39	79
		Burlingame	56	24	39
		Tuckertown	37	16	62
		Wickford	15	6	27
		Aquapaug	33	15	8
		Sum:	231	100	216
	Wordens	Aquapaug	251	57	32
		Burlingame	39	9	14
		Shannock	142	32	65
		Wickford	11	3	11
		Sum:	444	100	122
	Tucker	Tuckertown	26	66	256
		Shannock	1	3	6
		Wickford	2	5	20
		Burlingame	10	27	43
		Sum:	39	100	324
Γ	Belleville	Wickford	29	61	259
		Tuckertown	12	26	100
		Shannock	5	11	23
		Aquapaug	1	2	1
		Sum:	48	100	384
	S&S	Wickford	35	47	201
		Burlingame	34	45	73
		Aquapaug	6	8	4
		Sum:	75	100	278
	Bowdish	Tuckertown	70	68	263
		Burlingame	22	21	34
		Aquapaug	11	11	6
		Sum:	103	100	303

Weighted average SOC pool comparisons

	Pond	Soil Series Area % (ha)		% of pond area	Weighted Cpoo Average (Mg C ha ⁻¹)	
1	Watchaug	Shannock	89	39	79	
		Burlingame	56	24	39	
		Tuckertown	37	16	62	
		Wickford	15	6	27	
		Aquapaug	33	15	8	
-	XX 7 1	Sum:	231	100	216	
	Wordens	Aquapaug	251	57	32	
	1	Be	elleville	1	384	
	2	Т	ucker		324	
	_	-	uchei		521	
	3	Be	owdish		303	
	4		S&S		278	
	5	Wa	atchaug	5	216	
	6	W	orden		122	
		Sum:	48	100	384	
	S&S	Wickford	35	47	201	
		Burlingame	34	45	73	
		Aquapaug	6	8	4	
		Sum:	75	100	278	
	Bowdish	Tuckertown	70	68	263	
		Burlingame	22	21	34	
		Aquapaug	11	11	6	
		Sum:	103	100	303	

Freshwater subaqueous and subaerial SOC pool comparisons

Soil Type	Soil Classification	n	Mean SOC (Mg ha⁻¹)	CV (%)	Reference
Excessively Drained Uplands	Typic Udipsamments	20	110	15	Davis, 2004
Well Drained Uplands	Typic Udipsamments	29	136	28	Davis, 2004
Poorly Drained Palustrine Wetlands	Aeric Endoaquepts	20	187	31	Davis, 2004
Very Poorly Drained Palustrine Wetlands	Typic Haplosaprists	30	586	20	Davis, 2004
Poorly and Very Poorly Drained Riparian Wetlands	Aeric Endoaquepts	29	246	39	Ricker, 2010
Estuarine Subaqueous	Fluventic Psammowassents	9	47	43	Pruett, 2010
Estuarine Subaqueous	Sulfic Psammowassents	5	57	82	Pruett, 2010
Estuarine Subaqueous	Typic Fluviwassents	5	109	50	Pruett, 2010
Estuarine Subaqueous	Haplic Sulfiwassents	10	123	43	Pruett, 2010
Estuarine Subaqueous	Typic Sulfiwassents	5	141	42	Pruett, 2010
Estuarine Subaqueous	Fluvenitc Sulfiwassents	5	196	28	Pruett, 2010
Estuarine Subaqueous	Thapto-Histic Sulfiwassents	3	494	35	Pruett, 2010
Freshwater Subaqueous	Sapric (Terric) Frasiwassists	8	427	33	This Study
Freshwater Subaqueous	Sapric Frasiwassists	16	388	33	This Study
Freshwater Subaqueous	Aeric Frasiwassents	7	161	63	This Study
Freshwater Subaqueous	Typic Humaquepts	10	204	38	This Study
Freshwater Subaqueous	Psammentic Frasiwassents	5	56	58	This Study

Freshwater subaqueous and subaerial SOC pool comparisons

Soil Type	Soil Type Soil Classification		Mean SOC (Mg ha [⁻])	CV (%)	Reference	
Excessively Drained Uplands	Excessively Drained Uplands Typic Udipsamments		110	15	Davis, 2004	
Well Drained Uplands	Typic Udipsamments	29	136	28	Davis, 2004	
Davis, 2004	Pruett, 2010			This S	tudy	
110	57			56	-)	
(excessively drained)	(Suflfic Psammowasse	nts)	(Psam	mentic F	rasiwassents)	
136 109			161			
(well drained)	(Typic Fluviwassent	pic Fluviwassents) (Aeric Frasiwas			wassents)	
187	141			204		
(poorly drained)	(Typic Sulfiwassent	s)	(Typic Humaquepts)			
586	196		388			
(very poorly drained)	(Fluventic Sulfiwasse	nts)	(Sapric Frasiwassists)			
	494		427		7	
	(Thapto-histic Sulfiwas	sents)	(Saprie	c(Terric)I	Frasiwassists)	
r resnwater Subaqueous	Aeric Frasiwassents	/	101	03	1 ms Study	

r resnwater Subaqueous	Aeric Frasiwassents	/	101	03	i nis Study
Freshwater Subaqueous	Typic Humaquepts	10	204	38	This Study
Freshwater Subaqueous	Psammentic Frasiwassents	5	56	58	This Study

Freshwater SOC sequestration

Waterbody	Sampling ID	Depth to background levels of Pb and As	C Pool (Mg ha ⁻)	Sequestration Rate (Mg C ha ⁻¹ yr ⁻¹)
Belleville Pond	2011RI009018	15	81	0.89
Belleville Pond	2011RI009021	25	137	1.50
Belleville Pond	2011RI009022	20	87	0.95
S&S Reservoir	2011RI007003	30	86	0.95
S&S Reservoir	2011RI007005	20	99	1.08
S&S Reservoir	2011RI007007	25	131	1.44
Tucker Pond	2011RI009041	17.5	31	0.34
Tucker Pond	2011RI009044	12	90	0.99
Tucker Pond	2011RI009045	22.5	105	1.15
Worden Pond	2011RI009003	7.5	16	0.18
Worden Pond	2011RI009013	20	166	1.83
Worden Pond	2011RI009014	2.5	1.6	0.02
Watchaug Pond	2011RI009026	2.5	1.7	0.02
Watchaug Pond	2011RI009029	2.5	0.4	0.00
Watchaug Pond	2011RI009032	5	0.8	0.01

Freshwater SOC sequestration

Waterbody		Sampling ID	Depth to background levels of Pb and As	C Pool (Mg ha ⁻¹)	Sequestration Rate (Mg C ha ⁻¹ yr ⁻¹)	
Bellev	ville Pond	2011RI009018	15	81	0.89	
Bellev	ville Pond	2011RI009021	25	137	1.50	
Bellev	ville Pond	2011RI009022	20	87	0.95	
S&S					5	
S&S			$Mg C ha^{-1} yr^{-1}$		}	
S&S	Dean and	l Gorham, 1998	Mulholland, 1982	2 This S	Study	
Tucl	0.	05 - 0.72	0.03 - 1.28	0.00 -	- 1.83	
Tuc)	
Tuc			(usually < 0.40)		j	
Word	len Pond	2011KI009003	1.5	16	0.18	
Worden Pond		2011RI009013	20	166	1.83	
Worden Pond 2011RI009014		2.5	1.6	0.02		
Watchaug Pond 2011RI009026		2.5	1.7	0.02		
Watch	aug Pond	2011RI009029	2.5	0.4	0.00	
Watch	aug Pond	2011RI009032	5	0.8	0.01	

Key Results and Conclusions

• Soil organic carbon content varied both with depth and among soil types.

• SOC pools were greatest for the Wassists (>350 Mg C ha⁻¹ yr⁻¹) and least for the Psammentic Frasiwassents (< 60 Mg C ha⁻¹). Understanding the distribution of soil types in SOC accounting across the landscape is important.

• Average SOC sequestration rates ranged from 0.50 Mg C ha⁻¹ yr⁻¹ (natural) to 1.14 Mg C ha⁻¹ yr⁻¹ (created).

•A significant amount of SOC is being sequestered in both natural and created freshwater bodies throughout southern New England, although more work should be done.

Chapter 4 – Aquatic invasive plants, total extractable phosphorus, and freshwater subaqueous soil relationships

Objectives:

To quantify extractable P concentrations in the freshwater subaqueous soil environment in order to better understand relationships with aquatic invasive plant species.

Examine the effectiveness of subaqueous soil surveys to serve as an ecosystem based tool to understand the distribution of aquatic invasive plants in shallow southern New England lakes

Methods

1) Detailed vegetation mapping

2) Soil sampling (random)

3) Sequential phosphorus extraction (pore-water, NaHCO₃, and NaOH extractable P)

4) Statistical analysis using logistic regression

Ē

P sequential extraction

Extraction (ug g ⁻¹)	N	Mean	Media n	25% percentile	75% percentile	SE
Porewater Extractable P Concentration	100	3.05	1.40	0.78	5.18	0.30
NaHCO ₃ Extractable P Concentration	100	44.38	26.54	9.96	59.86	5.34
NaOH Extractable P Concentration	100	42.54	10.05	1.98	57.82	6.23
Total Extractable P	100	89.97	45.12	18.66	130.07	9.82

Ę

P sequential extraction – substrate type

Substrate Type	Depth (cm)	Porewater Extractable P Average (ug g ⁻¹)	NaHCO3 Extractable P Average (ug g ⁻¹)	NaOH Extractable P Average (ug g ⁻¹)	Total Extractable Phosphorus Average
Mucky					
mineral	0-5	1.44	14.61	16.21	32.26
	5-10	1.43	22.52	14.71	38.66
Organic	0-5	5.16	92.11	66.49	163.76
	5-10	5.84	64.01	91.96	161.81
Mineral	0-5	0.68	15.07	8.41	24.16
	5-10	0.69	12.94	9.26	22.89

Total extractable P and soil series relationships

Soil Series	Depth (cm)	Porewater Extractable P Average (ug g ⁻¹)	NaHCO3 Extractable P Average (ug g ⁻¹)	NaOH Extractable P Average (ug g ⁻¹)	Total Extractable P Average
Shannock	0-5	2.82	52.14	22.71	77.67
	5-10	2.37	27.91	19.98	50.26
Aquapaug	0-5	0.69	15.27	17.57	33.52
	5-10	0.75	12.33	16.17	29.25
Wickford	0-5	6.52	112.84	48.42	167.77
	5-10	6.82	53.00	128.59	188.41
Tuckertown	0-5	4.33	55.43	122.00	181.76
	5-10	5.80	65.09	79.60	150.48
Burlingame	0-5	1.75	36.03	11.44	49.23
	5-10	1.94	39.55	17.80	59.28

Vegetation mapping

Symbol	Species
Jm	Bayonet rush (Juncus militaris)
В	Bladderwort (Utricularia)
R	Burreed (Sparganium sp.)
Jc	Canadian rush (Juncus canadensis)
Ct	Cattail (<i>Typha</i> sp.)
F	Fanwort (<i>Cabomba caroliniana</i>)
Fh	Floating heart (Nymphoides cordata)
Н	Hornwort/coontail (<i>Ceratophyllum</i>)
Ну	Pennywort (<i>Hydroctyle umbellata</i>)
Ph	Phragmites (Phragmites australis)
Р	Pickerelweed (Pontedaria cordata)
Т	Pipewort (Eriocaulon aquaticum)
D	Pondweed (Potamogeton sp.)
Ι	Purple loosetrife (Lythrum salicaria)
R	Redhead grass (Potamogeton richardsonii)
G	Sedges (<i>Cyperaceae</i> sp.)
Nl	Swamp loosetrife (Decodon verticillatus)
Vm	Variable milfoil (<i>Myriophyllum heterophyllum</i>)
Vp	Variable pondweed (<i>Potamogeton gramineus</i>)
А	Water naiad (Najas sp.)
S	Water shield (Brasnia schreberi)
М	Water-milfoils (Myriophyllum sp.)
W	White water lily (Nymphaea odorata)
С	Wild celery (Vallisneria)
Y	Yellow water lily (Nuphar variegatum)
Pe	Yellow-floating heart (Nymphoides peltata)

Total extractable P and invasive species occurrence

	P-value by Extraction Method					
Variable Tested	Porewater	NaHCO ₃	NaOH	Total P		
P (0-5 cm) vs. occurrence of N	0.9708	0.3233	0.9903	0.5430		
P (5-10 cm) vs. occurrence of N	0.5021	0.9894	0.9045	0.9198		
P (0-5 cm) vs. occurrence of B	0.0750	0.2944	0.1054	0.1074		
P (5-10 cm) vs. occurrence of B	0.0624	0.0484	0.1245	0.0673		
P (0-5 cm) vs. occurrence of E	0.1095	0.9862	0.8626	0.9529		
P (5-10 cm) vs. occurrence of E	0.0734	0.2726	0.0999	0.0899		
P (0-5 cm) vs. occurrence of M	0.9937	0.9699	0.0355	0.1918		
P (5-10 cm) vs. occurrence of M	0.2027	0.5123	0.8905	0.6642		
P (0-5 cm) vs. occurrence of E and M	0.1029	0.9941	0.1733	0 3995		
P (5-10 cm) vs. occurrence of E and M	0.0119	0.1286	0.0822	0.0485		

N = Native vegetation only (n = 11)

B = Unvegetated (n = 9)

E = Invasives only (Fanwort or Variable milfoil) (n = 24)

M = Mixture of both native and invasive plant species (n = 6)

E and M = A combination of the "E" and "M" categories above (Invasives only, along with a mixture of both native and invasive plant species (n = 30)

Logistic regression probability plot

The output c-value = 0.714

This signifies a fairly strong relationship

'c' can range from 0.5 to 1, where 0.5 corresponds to the model randomly predicting the response, and a value of 1.0 corresponds to the model perfectly discerning the response

Key Results and Conclusions

Invasive plants were observed in all three impounded lakes, with variable milfoil (*Myriophyllum heterophyllum*) and *fanwort* (*Cabomba caroliniana*) the most common invasives. Two of the natural ponds were entirely free of all invasive plants.

➤ Total extractable P concentrations were found to vary significantly among soil types.

➢ Total extractable P concentrations were much greater in water bodies dominated by organic soils.

> Concentrations >200 μ g g⁻¹ total extractable phosphorus showed a higher probability for an occurrence of aquatic invasive plants.

Future research should test if 200 μ g g⁻¹ is an important concentration for other invasive plants and subaqueous soil types.

Acknowledgements

Thanks to: Advisor :

Dr. Mark Stolt

Committee:

Dr. Tom Boving (chair) Dr. Jose Amador Dr. Dawn Cardace

Jim Turenne (NRCS - RI) Maggie Payne (NRCS - RI) Donal Parizek (NRCS - CT) Debbie Surabian (NRCS - CT) Penelope Pooler (NPS)

Watershed Watch Linda Green Elizabeth Herron

Laboratory of Pedology Matt Ricker Chrissy Pruett Alex Salisbury Brett Still Andy Paolucci

Coastal Fellows and other help: Amanda Padula, Jillian Phillips and Marissa Theve (NRCS), Zach Gold, Shane McNamara, Ariana Pucci, Ashley Merlino, Adiza Amaowusu, and the Soil Micro lab.

Happy Birthday Mark!!!

Questions?