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Abstract
Coastal environments face a growing number of challenges as a result of a changing

climate (e.g., sea level rise, flooding, and erosion). In response, intertidal and sub-

aqueous soils (SAS) are being mapped to provide a soil resource inventory for use and

management decisions. An essential part of any soil resource inventory is particle size

distribution (PSD) analysis. Coastal soils have elevated levels of salts and sulfides

that can complicate PSD analysis, requiring time-intensive pretreatments. We tested

a regression model to reduce reliance on labor-intensive methods for PSD analysis.

Analysis of 257 SAS samples revealed a strong sand–silt relationship (p < 0.0001;

r2 = 0.975), allowing for accurate silt and clay prediction from sand content. For

samples with >40% sand (70% of the 257 samples), average absolute residuals of

predicted silt ranged from 0.80% to 3.58%. Randomized iterative testing (10,000

iterations) showed that as few as 50 samples of the original 257 could be used to

develop a model to provide PSD data with <4% absolute error for predicting silt for

samples with >40% sand. Accuracy of the model declined for samples with ≤40%

sand, especially <20% sand where average absolute residuals ranged from 7% to 8%.

We hypothesized that diatom skeletons disrupted the sand–silt relationship in the silt-

dominated samples, which contained as many as 9% diatoms. The regression model

developed in this study offers a faster, more time- and cost-effective alternative for

determining PSD analysis in SAS with >40% sand, aiding large-scale soil survey

efforts.

Plain Language Summary
Across the US coasts, large areas of underwater soils (subaqueous soils) are being

mapped. This finding provides soil property information for scientists making use

and management decisions. A key soil property is the relative abundance of sand-

, silt-, and clay-sized particles in a sample, or what is called the particle size

Abbreviations: AAR, average absolute residual; CZSS, coastal zone soil survey; PSA, particle size analysis; PSD, particle size distribution; SAS,

subaqueous soils.
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distribution (PSD). Coastal soils usually have high levels of salt that need to be

washed out prior to PSD analysis. Our goal was to develop a way to determine PSD

without having to perform this washing. Our hypothesis was that the PSD of subaque-

ous soils is energy-dependent and so should follow a simple model. In faster-moving

water, larger particles settle out; in slower-moving water, smaller particles settle. To

test our hypothesis, we analyzed 257 samples from a large estuary in Connecticut.

A very strong relationship between sand and silt contents allowed us to predict PSD

without the washing steps.

1 INTRODUCTION

The coastal environment, and associated communities, are

subjected to a number of stressors and issues including sea

level rise, saltwater intrusion, intense storms, hurricanes,

increased nutrient loading, and shoreline erosion. Consid-

ering that over 80% of the US population lives in coastal

states (NOAA, 2024), the USDA-NRCS (2024) initiated the

coastal zone soil survey (CZSS) to provide an inventory of

these soil resources for use and management decision-making

and problem-solving. Characterization is the foundation of

any soil inventory, especially particle size distribution (PSD).

Since mapping and characterization of subaqueous soils

(SAS) has only been a part of soil survey in the last 20 years

(M. Stolt et al., 2017), PSD data for SAS are quite limited rel-

ative to data for subaerial soils, and the datasets need to be

expanded.

The most common approaches to measure PSD are the

long-standing hydrometer and pipette methods, which have

been in use for nearly a century (Bouyoucos, 1934; Gee & Or,

2002). Given that PSD is such an integral part of soil char-

acterization, methods that are quicker or simpler to perform

are being developed and tested including laser diffraction,

integral suspension pressure (e.g., PARIO), and electrical

conductivity (Hasan & Abuel-Naga, 2024; Leemhuis et al.,

2024; Messing et al., 2024; Zhang et al., 2024). The accu-

racy of these alternative methods is often tested against pipette

analysis (Centeri et al., 2015; Faé et al., 2019; Konert & Van-

denberghe, 1997), suggesting that the pipette method is the

most accurate but also the most labor- and time-intensive. Of

the alternative PSD methods, laser diffractometry has been

in use for the longest time and is the most common in the

literature (Bittelli et al., 2022; Faé et al., 2019; Leemhuis

et al., 2024; Loizeau et al., 1994; Messing et al., 2024; Miller

& Schaetzl, 2012; Polakowski et al., 2021; Sperazza et al.,

2004). Regardless of the approach to measure PSD, there are

associated errors that need to be considered as a result of sam-

ple preparation and inherent differences in replicate samples,

instrument errors, and analyst errors.

Analysis of PSD is complicated in coastal soils because

of salts. This is especially an issue in estuarine SAS, which

are continuously exposed to the sulfate- and halide salt-rich

overlying water column, often at concentrations of 600 mM

(35 ppt) or more (Schmitt, 2008). In estuarine subaqueous

environments, halide salts are trapped in the porewater, and

the sulfate is often reduced to sulfide, forming Fe mono- or

disulfide (M. H. Stolt & Rabenhorst, 2011; M. Stolt et al.,

2017). Sulfate salts are produced when the SAS samples are

dried for analysis and the sulfides are oxidized. Issues with the

salts are twofold: (1) flocculation of clay-sized particles due

to electrostatic forces between salts and clay particles (Chi-

bowski et al., 2011), which causes erroneous measures of finer

particles in the sedimentation column; and (2) errors in clay

content measures as dissolved salts are measured as part of the

clay-sized fraction, leading to an overestimation of the percent

clay (Bradley, 2001; Demas, 1998; Gregory & O’Melia, 1989;

M. H. Stolt & Rabenhorst, 2011; Sutherland et al., 2015). To

minimize the effects, salts are removed through washing and

centrifuging or with week-long dialysis tubing osmosis until

salt concentrations are below 10 mM (Gee & Or, 2002). Salt

removal is time-intensive and has the potential of additional

error if fine material is lost during decanting or removing sam-

ples from the dialysis tubing. Incorrect measurement of PSD

of SAS may lead to interpretation issues relative to dredging,

erodibility, cation exchange capacity, and shellfish suitabil-

ity (Balduff, 2007; Barko & Smart, 1986; Erich et al., 2010;

M. H. Stolt & Rabenhorst, 2011). Thus, there is a need for

a less time-consuming approach to measure the PSD of SAS

without introducing additional error. This is especially rele-

vant given the current CZSS efforts to deliver a soil inventory

of the coastal soils of the United States (USDA-NRCS, 2024).

In aquatic ecosystems, PSD is primarily controlled by the

amount of energy in the water, with coarser materials settling

out in high-energy environments and finer materials settling

out in lower-energy environments (Balduff, 2007; Bradley,

2001; Demas, 1998; M. H. Stolt & Rabenhorst, 2011; M.

Stolt et al., 2017). Balduff (2007) noted that this results in a

much narrower range in SAS particle distributions compared

to soils from nearby subaerial soils. Because of the relation-

ship between system energy and PSD, we hypothesized that

there should be a relatively simple model that explains the

variability in percent sand relative to percent silt in SAS. Once
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such a model is developed for a given project or study area,

the analyst would be able to determine silt and clay content

and thus the texture class of SAS samples based on sand con-

tents alone. This method would predict silt content from sand

content, and clay content would be determined by the remain-

ing portion of the PSD not contributed by silt and sand. Such a

method would minimize the need for pipette, laser, or hydrom-

eter analysis, and thus, salt removal would not be necessary.

In order to validate this as a potential method for PSD analysis

in future characterization efforts, we tested this approach on

257 SAS samples collected from a large estuary (Long Island

Sound).

2 METHODOLOGY

Long Island Sound extends across the entire coastal shoreline

of Connecticut (185 km). Sampling efforts were focused on

water depths to 4 m in nearshore subaqueous environments by

NRCS soil scientists as a part of their Long Island Sound soil

survey efforts (USDA-NRCS, 2022). Note that 106 pedons

were sampled via vibracore to 200+ cm or refusal, and typ-

ical field properties were described and recorded (horizon

designation, field texture class, fluidity, boundary distinction,

3% and 30% H2O2 reaction class, pH, electrical conduc-

tivity, odor, and parent material). A total of 257 mineral

horizons were randomly selected and analyzed for PSD from

a range of SAS pedons distributed over the entire survey

area.

2.1 Particle size analysis (PSA)

Bulk samples were air-dried and gently ground with a mortar

and pestle to disrupt clods >2 mm. Dried and ground sam-

ples were passed through a 2-mm (#10) sieve to remove coarse

fragments. A portion of each sample was dried at 105˚C and

weighed to determine soil moisture content, and heated to

550˚C for 5 h (loss on ignition) to determine soil organic

matter (SOM) content. For samples with >4% SOM, organic

matter was removed with 30% hydrogen peroxide prior to PSD

analysis (Gee & Or, 2002). Replicate samples were processed

to determine oven-dry weights for calculating PSD by weight.

Processed samples were added to centrifuge bottles, filled

with deionized (DI) water, shaken by hand, and centrifuged

at 2500 RPM for 7 min. The supernatant was decanted, and

additional water was added to the soil, shaken, and centrifuged

again. This was repeated (two to five times, depending on the

sample) until the sample was washed of chloride salts. We

tested for salts by adding a drop (0.05 mL) of 0.017 N sil-

ver nitrate to approximately 2 mL of supernatant (Nóbrega

et al., 2023). We assumed that the sample was free of salts if

no white precipitate formed.

Core Ideas
∙ Salts and sulfides in estuarine subaqueous soils can

complicate measuring particle size distributions.

∙ Particle size distribution of subaqueous soils is dic-

tated by the energy (flow rate) of the overlying

water column.

∙ Particle size distribution can be effectively mod-

eled by total sand content for large-scale subaque-

ous soil surveys.

∙ Finer-textured subaqueous soils may have a large

quantity of silt-sized diatom skeletons that affect

particle size distribution relationships.

PSD was determined for all mineral samples following the

procedures described by Gee and Or (2002) after removing

salts (and organic matter when needed). Samples were treated

with a sodium hexametaphosphate solution and placed on

a horizontal shaker for 24 h to disperse the primary parti-

cles. Sands were separated from the silt and clay fraction by

wet-sieving using a 53-μm (#270) sieve, oven-dried, and the

fractions separated through a nest of standard-sized sieves

(1000, 500, 250, 105, and 53 μm). Silt and clay particles were

collected in sedimentation columns and determined by the

pipette method (Gee & Or, 2002).

2.2 Diatom quantification

Diatoms are single-celled aquatic organisms whose silica-

based skeletons (frustules) often fall in the silt-sized range

(Battarbee et al., 2002). To estimate their abundance, we ran-

domly selected 30 mineral horizons from the 257 samples. For

each horizon, 1–2 g of air-dried soil was rinsed with DI water

through a 53-μm sieve to filter out very fine sand and coarser-

sized particles. The entire <53 μm slurry was retained and

homogenized, and a 1 mL aliquot was pipetted onto a glass

slide and gently dried on a hot plate.

The dried slurry was analyzed using a Zeiss 470916–

9903/38 standard microscope equipped with a bright-field

optical system and magnifications ranging from 100× to

400×. We adapted the line-point intercept grain-count tech-

nique of Galehouse (1971). A single fixed point in the center

of the eyepiece reticle served as the counting probe, while the

mechanical stage advanced in parallel transects from right to

left. Diatoms were identified by valve outline, raphe structure,

and striae pattern following Battarbee (1986). Fragmented

or weathered frustules were counted if at least one diagnos-

tic feature could be recognized; otherwise, they were logged

as silt. Every particle crossing the probe was recorded until
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300 intercepts were tallied and recorded as either mineral or

diatom.

2.3 Statistical analysis

JASP 0.19.0 (JASP Team, 2024) was utilized for exploratory

data analysis. R version 4.4.2 (R Core Team, 2020) was

utilized for figure creation, linear regression modeling, and

residual calculation. A linear regression was established with

total sand as the independent variable and total silt as the

dependent. As a measure of model error, we calculated aver-

age absolute silt content residuals (|actual silt content −
predicted silt content|) across 10% sand intervals (e.g., 10%–

20%, 20%–30%). To determine the minimum sample size

required for a reliable predictive model in future studies, we

conducted random subsampling without replacement, testing

model sample sizes from 10 to 250 in increments of 10. For

each model sample size, we randomly selected subsets from

the full dataset (n = 257) and fit a linear regression model to

the silt and sand content. Absolute residuals were calculated

for all points in the full dataset. R code was used to sam-

ple data (see Supporting Information for code). This process

was repeated 10,000 times per model sample size, yielding

mean and maximum average absolute residuals (AARs) for

each iteration.

3 RESULTS AND DISCUSSION

The PSD in the ternary textural triangle diagram shows a

simple pattern of an increase in silt with a decrease in sand,

while the largest range in clay (2%–31%) occurs at the high-

est silt contents (Figure 1). Similar results were reported by

Balduff (2007) for SAS in Chincoteague Bay (a large estuary

in Virginia). The relationship between total sand content and

percent silt was highly significant (p < 0.0001; r2 = 0.975;

Figure 2). In contrast, using silt as a predictor of clay was

relatively ineffective, with an r2 value of only 0.376. When

using sand as a predictor, AAR values of predicted silt ranged

from<1% to 8%, with a general increase going from the great-

est amount of sand to the least. For sand contents >20%, AAR

values were 4.5% or less, but for sand contents <20%, the

values nearly doubled (Figure 3), suggesting confounding fac-

tors in explaining variability in the PSD of the finer fractions.

Some variation in PSD is expected when utilizing different

methods. For example, reports suggest that there is a 55%–

95% agreement between different methods (laser diffraction,

hydrometer, and pipette) for assigning particle size classes

(Bittelli et al., 2022; Coates & Hulse, 1985; Elfaki et al., 2015;

Faé et al., 2019; Polakowski et al., 2021; Yang et al., 2019).

Miller and Schaetzl (2012), for example, reported that over

11% of the replicate samples measured using laser diffractom-

F I G U R E 1 Particle size distribution of all sampled horizons

(n = 257). Each marker on the plot is a single sample.

F I G U R E 2 Linear relationship between sand content (%) and silt

content (%) of mineral soil samples collected from Long Island Sound

subaqueous soils (n = 257). A significant negative relationship

(p < 0.0001) was found between sand and silt content.

etry showed a different texture class. Intra-method variation is

another source of error, with typical variation in percent silt

between 1% and 4% expected for the pipette method (Cen-

teri et al., 2015; Coates & Hulse, 1985; Indorante et al., 1990;

Mota et al., 2019). Centeri (2015) examined the differences in

percent measured silt between two professionals determining

PSD via pipette and reported a mean absolute difference of

1.53 ± 2.28% (2 standard deviations).

Given the importance of accurate PSD data, a common

question in many of the investigations of PSD methodol-

ogy is how much error is acceptable (Centeri et al., 2015;
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F I G U R E 3 Average absolute residuals of predicted silt when

utilizing the linear relationship presented in Figure 2. Samples were

binned into 10 categories based on their sand content (%): 0–10, 10–20,

20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90, and 90–100.

Dotted line (3.81%) indicates the average error using the pipette method

for measuring percent silt between two professionals as reported by

Centeri (2015). Sand bins 0%–10%, 10%–20%, 20%–30%, and

30%–40% have a higher error rate than 3.81%, indicating that silt

contents in soils with ≤40% are not as well predicted by our model.

Coates & Hulse, 1985; Faé et al., 2019; Yang et al., 2019).

Since we used the pipette analysis to develop and test our

model, we followed Centeri et al. (2015) and chose 3.81%

as the maximum allowable average error in percent silt cor-

responding to the upper limit of 2 standard deviations of

intra-method variability. Categorizing sand content into bins

having increments of 10% (e.g., 0%–10%, 10%–20%), sam-

ples with at least 40% sand had AARs ranging from 0.80% to

3.58% (Figure 3), with an overall mean of 1.00%. In addition,

none of the 187 (70%) samples with >40% sand differed in

texture class between the modeled data and the pipette data.

Thus, error analysis suggests that for SAS samples collected

in Long Island Sound that have at least 40% sand, PSD can be

accurately determined by measuring the sample’s sand con-

tents and predicting silt contents from the regression equation.

The advantage of this approach is that time-intensive pipette

analysis and pretreatments to remove salts are not required.

Flocculation as a result of elevated concentrations of salts

effectively only occurs in the clay fraction because the clay

fraction is the dominant source of cation exchange capacity

(Chibowski et al., 2011; Gregory & O’Melia, 1989; Suther-

land et al., 2015). Thus, because salt removal is not necessary

for sand content determination, this model saves a consid-

erable amount of time without introducing more error than

would already be expected from using traditional methods.

If slightly more variability can be accepted (4.15%), PSD of

F I G U R E 4 Results of random subsampling of our dataset to

determine the minimum sample size for modeling purposes. Sand bins

are grouped in 10% increments (40%–50%, 50%–60%, 60%–70%,

70%–80%, 80%–90%, and 90%–100%). Average absolute residual

values for each bin are represented by the circles, and error bars show

the maximum average absolute residual across 10,000 random

subsamples. The sample size increased in increments of 10, ranging

from 10 to 250 samples. Dotted line (3.81%) indicates the average error

using the pipette method for measuring percent silt between two

professionals as reported by Centeri (2015). All sand bins have an

average absolute residual of <3.81% and a maximum average absolute

residual of <4% when the sample size is 50 or greater.

samples with at least 20% sand may be ascertained almost as

accurately.

Over 250 samples were analyzed to create the predictive

PSD model for the 15,000-ha study area that was investi-

gated and mapped in Long Island Sound. Did we need all

257 samples to create an effective model, or could we have

used fewer samples? To answer this question, we utilized R

to randomly subsample without replacement from the origi-

nal 257 sample set a given number of samples from 250 to

10 at 10 sample intervals (e.g., n = 250, n = 240, n = 230)

with 10,000 iterations (Figure 4). The average and maximum

AAR values showed little change with a decreasing sample

size up to 50 samples. At 50 samples, the maximum AAR

value was still <4%, suggesting that as few as 50 samples

(20% of the total samples) could be used to create an effec-

tive model for determining PSD of samples with >40% sand

in future studies.

We questioned why the amount of variation increased with

a decrease in sand content, especially in samples with <20%

sand. Some of this could be a function of flocculation of the

clay fraction in the haline waters (Chibowski et al., 2011;

Gregory & O’Melia, 1989; Sutherland et al., 2015). We also

suspected that the number of diatoms in the samples may

be an issue since diatom skeletons occur primarily in the

silt fraction. For example, soils classified as silt contained

nearly 9% diatom skeletons among their mineral particles

(Figure 5). The greater abundance of diatoms in the sam-

ples with silt loam and silt textural classes may be why the
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F I G U R E 5 Number of diatoms relative to different USDA soil texture classes. Each circle on the plot is one sample (n = 30), and the color

gradient represents varying diatom content (%) of the total mineral primary particles across the soil samples.

predicted silt residuals are so much higher than those in

samples with more sand. Diatoms are less dense than most

primary soil particles (Miklasz & Denny, 2010; Skopp, 2000),

and the sinking speed of diatoms can vary significantly by

species (Miklasz & Denny, 2010). Most marine diatoms are

elongate in shape rather than the relatively spherical mineral

particles assumed in Stokes’ law. Thus, diatoms are expected

to settle more slowly in the water column, requiring less

energy to remain suspended compared to similarly sized min-

eral silt particles (Miklasz & Denny, 2010). As a result, an

abundance of diatom skeletons may disrupt the silt–sand rela-

tionship expected in subaqueous environments, particularly in

lower-energy aqueous environments.

4 CONCLUSIONS

This study demonstrates a clear relationship between sand and

silt contents in the PSD of SAS of the Long Island Sound.

Our study found that for soil samples with > 40% sand, mea-

sures of total sand can be used to accurately determine PSD

of the silt fraction. In SAS samples with lower sand con-

tent, the presence of diatom skeletons appears to result in

greater variability in PSD, reducing the model’s predictive

accuracy. Diatoms remain suspended for longer periods and

settle more slowly than similar-sized mineral particles, which

further complicates PSD modeling in these soils. For these

finer-textured samples, pipette, hydrometer, or other alterna-

tive methods, such as laser diffraction, are likely required for

accurate PSD determinations.

Considering that 70% of the 257 horizons we measured

PSD had >40% total sand, being able to model PSD for

sandy loam, loamy sand, and sand-textured SAS samples

by only measuring the sand fraction greatly reduces the

need for more time-consuming analysis and pretreatments.

Our findings have practical implications for soil survey field

offices or soils laboratories that are providing characteriza-

tion data for survey efforts of sandy SAS, especially those

in high-energy estuarine environments where salts can com-

plicate analyses. Compared to other alternative methods of

PSA, our proposed method of PSA yields results with sim-

ilar accuracy but without the need for costly instruments

such as laser diffractometers or pressure transducers. Cur-

rent yearly work plans for nationwide coastal surveys include

goals of mapping SAS in North Carolina, Florida, Missis-

sippi, Texas, Alabama, and Louisiana, encompassing over

125,000 ha (USDA-NRCS, 2024). Our study found that for

large datasets, as few as 20% of samples can be used to develop

an effective PSD model. Given the potential time and cost sav-

ings, this model can be a valuable tool for soil surveyors when

the goal is rapid, broad-scale soil mapping in subaqueous

environments.
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